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Liquid crystalline materials in complex confinement geometries have lately attracted considerable attention because of 
several interesting physical phenomena residing in strong surface interaction effects. Following recent investigations, we 
propose a Monte Carlo simulation model for characterizing the molecular director configuration in a nematic liquid crystal 
cell having a defect cylindrical hole in a central region of one of the boundary substrates. The main results illustrate the 
director’s spatial profile and the local order parameter distribution for the proposed confining geometry, as well as the 
interaction field propagation through the bulk in the case of different anchoring regimes imposed at the boundaries.   
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1. Introduction 
 
Liquid crystals (LCs) exhibit a large variety of phases 

and structures and, due to their particular physical 
properties such as fluidity, transparency, optical 
anisotropy, represent a convenient testing ground for many 
complex systems and even exotic phenomena[1-6]. 
Because of the large number of potential applications in 
the fields of science and technology [7,8] , they represent a 
category of very interesting materials which have drawn 
the attention of scientists dealing with fundamental 
research issues [1,2,9-11], as well as applied physical 
topics [1,2,4,5,12,13]. 

LCs are also typical examples of soft-matter systems, 
in which a relatively small amount of locally supplied 
energy may cause a response on a macroscopic scale [14]. 
The physical behavior of liquid crystals is largely 
characterized by the surface properties and, particularly, 
the surface anchoring energies play an important role in 
establishing the local orientation of the molecules. During 
the last decades, the interest in the study of the behavior of 
different condensed matter phases confined in micrometric 
and submicrometric cavities has increased from both 
fundamental and technological point of views [15]. If the 
confinement boundaries also present some geometric 
irregularities, the theoretical approach becomes very 
challenging, as the field orientation of the LC molecules at 
the interfaces and in the defect regions may assume 
complex configurations.   

The study of the molecular arrangement in confined 
geometries is an important topic, not only for the correct 
identification of these configurations, but also for 
advancing in the understanding of the physical processes 
that occur in liquid crystalline samples. 

Recently, we have observed a nonstandard behavior of 
electric conductivity within some samples of nematic 
liquid crystal (NLC) that can be associated with the local 

orientational order at the free surfaces of liquid crystals 
[16]. Different order configurations can enhance or can 
weaken the average overlapping of electronic clouds of 
neighboring molecules, modifying thus the macroscopic 
electric conductivity. 

For better understandings on how the orientation of 
the local molecular director imposed by two free surfaces 
competes with the homeotropic alignment dictated by the 
electrodes of a nematic cell, Monte Carlo simulations were 
recently performed for a liquid crystalline system [17]. 
These investigations were in perfect agreement with 
previously obtained experimental results. 

In this manuscript, we go beyond the case of an ideal 
system by increasing the complexity of the simulated 
model and characterizing the molecular director structure 
in a NLC sample cell presenting a cylindrical defect hole 
in a central region of one of the boundary substrates. The 
main points in our investigation are represented by the 
study of the director’s spatial profile and the local order 
parameter distribution, as well as the field propagation 
through the bulk for different boundary anchoring regimes, 
in the case of the proposed confining geometry. Since the 
geometry of the system is rather complicated, a solution 
for this problem cannot be obtained by direct minimization 
of the free energy described by using the liquid crystal 
continuum theory and, eventually, Monte Carlo simulation 
becomes a solution of choice.    

 
2. Molecular model and simulation method 
 
We use the Monte Carlo simulation method as an 

investigation tool for the molecular order in a nematic 
liquid crystal cell that presents a defect located in the very 
center of a side boundary wall. The simulation routine is 
the well-known Lebwohl-Lasher model [18], which 
consists in a system of spins, si, placed in a cubic lattice, 
interacting with the attractive energy: 
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where εij is a positive constant (ε for nearest neighbors 
particles and zero otherwise) and P2 is the second rank 
Legendre polynomial. This approach was widely used also 
in describing the properties of liquid crystal displays 
[19,20] and nematic structures in various confining 
geometries [15,17,21,22]. The main advantage of using 
this method with respect to other models, having also 
translational degrees of freedom, is the fact that spins' 
centers of mass are fixed, significantly reducing the 
computer simulation time. On the other hand, this system 
gives a realistic representation of a nematic liquid 
material, showing a first order phase transition at scaled 

temperature 1232.1* ==
ε

NI
NI

kT
T  [23].   

The considered NLC system fills a cell of rectangular 
shape, with dimensions HLL ××  in lattice units, having 
the electrodes parallel with XOY plane. The bottom 
electrode presents a cylindrical "defect", of height HB and 
radius R, as shown in figure 1. We assume periodic 
boundary conditions for all other directions. 

 

       
 

Fig. 1. Geometry for the simulated nematic liquid crystal 
cell, showing the cylindrical defect at one of the surfaces. 

 
 

The order of the spins inside the cell is imposed by the 
surface boundaries. Hence, spins from layers situated in 
the first proximity of the electrodes are fixed and normally 
orientated with respect to them. On the other hand, the 
spins located near the wall, inside the cylindrical defect are 
also fixed and radialy orientated toward the main axis of 
the cylinder (Fig. 2). All the other spins are free to rotate.  

Accordingly to this situation, we consider that the 
parameter εij from equation (1) is equal to Bε  for two 

adjacent free moving spins and Sε  for the interaction of a 
free spin with a nearby fixed one. The later parameter will 
also describe the anchoring effects at the boundary walls 
[22]. At temperatures bellow *

NIT  a competition between 
these orientation tendencies is expected, resulting in an 

interesting distribution of the director field inside the 
defect region as well as in the bulk of the simulated 
nematic cell.  
                     

 
       

                
 
Fig. 2. Schematic for the orientation of the spins near the 
boundary walls of the cell. (a)Top. Cross section of the 
cell (parallel with the YOZ plane). (b)Bottom. Top view 
of  the  electrode  presenting  the defect (parallel with the  
                               XOY plane, at 2=z ). 

 
The order of the system is described by the local order 

tensor, defined as [24]: 
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where zyx ,,, =βα  and δαβ is the Kronecker delta; 
<…> is the ensemble average and nspin is the number of 
spins. If nspin is the total number of spins in the lattice, the 
order parameter of the bulk sample is obtained from the 
largest positive eigenvalue of the order tensor Qαβ, while 
the corresponding eigenvector is the NLC director [25]. 
The biaxiality P is the absolute value of the difference 
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between the remaining two eigenvalues of the order tensor 
Qαβ.  If we choose that 1=spinn , the average is performed 
on Monte Carlo cycles only and, in this case, Qαβ describes 
the local order [17]. Because of the relatively complicated 
geometry of the cell, we concluded that the behavior of the 
bulk order parameter (obtained from the Lebwohl-Lasher 
model) is not quite enough to describe the distribution of 
the nematic order. We obtained instead the simulated 
values of ( )zyxQ ,,αβ  for all of the lattice points. With 
these local tensors, we found (after diagonalization) the 
values for the local order parameter, ( )zyxS ,, , and the 

director field, ( )zyx ,,n , in all the points of the lattice, 
including the cylindrical defect region.  

The Monte Carlo procedure was a standard one 
[24,26]: a spin was randomly picked and rotated. We 
calculated the energies for the old and new state and the 
move was allowed by using the Metropolis acceptance 
criterion [24,26,27]. Firstly, the system was equilibrated 
for 50000 Monte Carlo cycles and then we used 100000 
Monte Carlo cycles for collecting the averages. 

 
 
3. Results and discussion 
 
The system described in the previous section was used 

to simulate the behavior of a namatic liquid crystal cell 
presenting a defect hole in the central region of the bottom 
electrode. The dimensions for the simulated box were 

143434 ××=×× HLL  in lattice spacing units. The 
defect was of cylindrical shape, having radius 5.6=R  
and height 7=BH  lattice spacing, that is half of the 
height of the cell. It follows that the number of free 
rotating spins was 16540 and a Monte Carlo cycle 
consisted in 16540 attempted moves. 

            

           
         

Fig. 3. Surface plot of the local order parameter in a 
horizontal plane situated at z=8. 

 
 

We obtained the local order parameter values for all 
the points of the nematic cell, including the defect region, 
for a temperature 9.0* =T , which is deep enough in the 

nematic phase. By initially considering that BS εε 5.0=  
we simulated a relatively low anchoring regime [22]. In 
figure 3 we plotted the obtained values for the order 
parameter in a horizontal plane, for 8=z  (i.e. near the 
side of the cell showing the defect). We recall that, 
according to figure 1, the bottom side of the cell is located 
in the plane 7=z . 

   
 

Fig. 4. Nematic order parameter for a horizontal plane 
situated at z=8 over the defect region. Darker areas 

indicate smaller values of the order parameter. 
 

In this case, one can notice that for the regions which 
are not situated above the defect the order parameter is 
about 0.7, values which are similar to those obtained for a 
regular nematic cell [28]. The perspective is completely 
different for points positioned over the defect region. 
When approaching the margins of the hole, the nematic 
order parameter decreases to values of approximately 0.53, 
producing a ring-like section, as shown in figure 4. 
Surprisingly, it progressively increases when then 
advancing towards the center of the cavity, reaching a 
maximum value of 0.7. 

 

          
Fig. 5. Comparison between the nematic order parameter 
values for 8=z , 9=z and 10=z . The simulated 
values  are  increased  by  a factor of 0.1 in this order for  
                           comprehensibility reasons. 



1430                                                                                        C. Berlic, V. Barna 

 
This behavior rapidly disappears as we move further 

away from the defect zone, when z increases; for values 
11≥z  being practically unnoticeable (figure 5). This is 

due to the fact that the considered anchoring strength is 
relatively small. Other simulations were made, for the 
same temperature, but for strong anchoring regime 
( BS εε = ), resulting in a decrease of the order parameter 

in the ring-like region, which persists up to 13=z . 
 

 
 

Fig. 6. Order parameter (S) and the biaxiality (P) at z=8, 
near the center of the cavity. Error bars sizes are of 
dimension  of  the  symbols  and  were  omitted. Lines are  
                               only guide to the eye. 

 
 

This overall behavior of the order parameter lead us to 
the conclusion that the ring-like region where S decreases 
is a disclination line. For further understandings, we 
investigated the order parameter together with the 
biaxiality near the center of the cavity, that is 8=z  and 

17=y  (the coordinates for the center of the cavity are 
5.16=x , 5.16=y , 7=z , as showed in fig 1 and 2). 

For regions which are not near the cavity, the nematic 
order is uniaxial with 7.0=S  and 05.0=P , as it is 
expected for a homogenous bulk nematic sample. As we 
approach the margins of the cavity, the order parameter 
decreases to 53.0≅S , while the biaxiality becomes 

1.0=P ; that is, the system is weakly biaxial. The order 
parameter and the biaxiality over the center of the cavity 
have the same values as for the regions that are far away 
from the defect. Figure 6 shows that the diameter of the 
ring-like disclination line is 17 lattice spacings, which is 
greater than the diameter of the simulated defect hole 
(which is 13 lattice spacings).  

Inside the defect cavity, the situation is completely 
different. The ring-like region degenerates into two point 
defects, and the surface plot of S has a saddle-like shape, 
as it can be observed from figure 7, where we plotted the 
order parameter in the middle of the cavity (for 4=z ). 
An important result is that the two point defects have the 
tendency to migrate towards the diagonal of the simulation 
box. We explain this behavior by admitting that between 
the two defects exists a repelling effect which tends to 
maximize the distance between them. This effect is 
enhanced if the initial anchoring strength is increased.  

 

            
 

Fig. 7. Surface plot of the order parameter in a 
horizontal plane situated in the hole at z=4. For points 
having  the  distance from the axis of the cylinder greater  
                  than R the spins are fixed and S=1. 

 

   

      
Fig. 8. (a)Top. Contour plot of the order parameter at 

4=z  for low anchoring regime, BS εε 5.0=  
(b)Bottom. Contour plot of the order parameter at 4=z   
                    for high anchoring regime, BS εε = . 
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Fig. 8 shows what happens with the contour plots of 
the order parameter at 4=z  for low anchoring 
regimes, BS εε 5.0= , and for the higher ones, BS εε = . 

The ‘diagonalization’ effect is more visible in the 
second situation and presents many similarities with defect 
structures obtained elsewhere for an elongated particle 
immersed in a liquid crystal host [29]. 

In order to elucidate the structure of these two point 
defects we ploted the projection of the nematic field, n, in 
a plane parallel with XOY plane, at 4=z , as it was 
obtained after the simulation (Fig. 9). We can conclude 
that near the walls of the cylinder molecules have the 
tendency to orient radially, but the projection of the 
nematic field rotates around the disclination point with a 
value of about 65o. However, in the disclination point, the 
director field is parallel with OZ axis, forming a two point 
"escaped structure", similar in a way with the escaped 
radial structure obtained for cylinders of infinite height 
[22]. 

 

 
 

Fig. 9. Projection of the nematic director field, n, in a 
plane parallel with XOY, for 4=z  and BS εε 5.0= . 

 
 
For nematics in cylindrical geometries, the Monte 

Carlo simulations and numerical stability analysis [30] 
showed that for a large cylinder radius and strong 

anchoring regime ( 27≥
B

SR
ε
ε

), an escaped radial 

structure should be present. In our case, we obtained an 

escaped radial structure even for a ratio 25.3=
B

SR
ε
ε

, 

and this may be explained by taking into consideration that 
our cylinder is short and has one bulk open cape. 

In a region far away from the defect hole, the nematic 
configuration inside the cell should have the director 
parallel with OZ axis, as imposed by the boundary walls 
conditions. Alternatively, inside the defect region, the 
director tends to be radially orientated toward the center of 

the cylinder (i.e. normal to OZ axis), as dictated by the 
walls of the hole. As already demonstrated, by having to 
obey these two antagonistic requests, the director profile 
for our simulated system shows a more complicated 
pattern. Figure 10 pictures the contour plot of the angle 
between the local nematic director and OZ axis, for a 
plane parallel with XOZ that passes near the center of the 
cavity ( 17=x ), which is also intersecting the two 
disclination points inside the cylinder.   
     
 
 
 
 
 
 
 
      
   
 
 
 

Fig. 10. Contour plot of the angle between the nematic 
director orientation and the OZ local axis in a plane 
parallel with XOZ which passes near the center of the 
cavity  ( 17=x );   BS εε 5.0= .  (FS – Fixed Spins). 

 
For regions far enough from the defect hole, the 

nematic behaves as expected, the angle between the 
director and the OZ axis being up to 10o. Inside the hole, 
near its bottom and also in the proximity of the walls, the 
molecules are radialy orientated having an approximate 
angle of 90o with respect to the domain axis. As we go 
through the cap of the hole, the angle decreases, reaching a 
value of about 60o at its margins. The distortion of the 
nematic field produced by the defect hole is also 
propagated inside the cell, the angle becoming smaller 
than 10o only when 18≥z . We record the general shape 
for the entire distortion as being similar to a "mushroom 
type". In the case of the strong anchoring regime, 

where 25.3=
B

SR
ε
ε , the angle mapping is almost 

equivalent. Simulations made for 3.1* =T , temperature 
that is above the nematic-isotropic transition, show that the 
molecular order inside the cell, as well as the defect cavity, 
disappear, even for strong boundary anchoring regimes. 
These results once again confirm the eligibility of our 
proposed simulation model. 

 
 
4. Conclusions 
 
We have used Monte Carlo simulation to investigate 

the local order and the competing interactions in a nematic 
liquid crystal cell with a defect hole at one of its boundary 
surfaces. Despite some limitations imposed by the 
relatively small dimensions of our simulated system, the 
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obtained results are in a good agreement with similar ones 
from scientific literature. By analyzing the simulated 
values of the local order tensor, ( )zyxQ ,,αβ , we found 
the local order parameter values, ( )zyxS ,, , and the 
profile for the director field, ( )zyx ,,n , in all the points 
of the lattice, including the cylindrical defect region. By 
building 2D and 3D mapping of the order parameter, we 
obtained a ring-like distribution around the cavity where 
the system is weakly biaxial. When inside the hole, the 
ring-like region degenerates into two repelling point 
defects, and the surface plot of the order parameter 
presents a saddle-like shape. For our simulated system, the 
molecular director profile inside the bulk has a relatively 
complicated configuration, presenting a pattern similar to a 
“mushroom type”. Also, the results obtained for different 
anchoring regimes at the boundary walls and various 
temperatures around the nematic-isotropic transition are in 
good agreement with the physical phenomenological 
model. Our choice for the geometrical dimensions of the 
simulation cell assured that spins above the defect region 
do not directly interact with their periodical images. 
Consequently, we achieved an accurate mapping of the 
director distribution, the only influence being attributed to 
the defect present in the system. Yet another interesting 
scenario  to investigate is represented by a system with a 
lattice of closer defects, allowing interactions between 
spins situated above different holes. In this situation we 
could simulate periodical structures such as two 
dimensional photonic crystals with a periodic cylindrical 
network filled with liquid crystalline material. 
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